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Abstract 
 

Growing numbers of commercial and closed source applications are being developed using the Python 
programming language. The trend with developers of such applications appears to be that there is an 
increasing amount of effort being invested in order to stop the sourcecode of their application being easily 
obtainable by the end user. This is being achieved through the use of a variety of obfuscation techniques 
designed to impede the common methods of Python decompilation. Another trend occurring in parallel is the 
use of Python as an increasingly present component of 'Cloud' technologies where traditional bytecode 
decompilation techniques fall down not through obfuscation, but through lack of access to the bytecode files 
on disk. 
 The techniques discussed in this paper extend existing Python decompilation technologies through taking 
an approach that does not require access to standard Python bytecode files (.pyc/.pyo), but rather focuses 
on gaining access to the bytecode through instantiated Python objects in memory and using these to 
reconstruct a sourcecode listing equivalent to that composed by the applications author. Approaches will 
also be discussed of how to defeat the common obfuscation techniques that have been observed in use in 
order to be able to use the in memory decompilation techniques. 
Finally a proof of concept embodiment of the techniques developed will be discussed which will allow people 
to quickly leverage them to evaluate code for bugs that was previously opaque to them. 
 
 
 
1. The Problem Space 
 
  The starting point for the work discussed was the need to be able to audit Pythoni applications 
for security relevant bugs in order to make assertions about the risk they may introduce into an 
environment. In the pursuit of this goal it became apparent that many closed source/non-free 
programs that were written in Python were making efforts to hinder the assessment of their 
security through attempting to not allow access to their sourcecode. Python has become an 
increasingly popular language of choice for a variety of commercial & closed source applications 
due to its ability to allow rapid development and prototyping, as well as because of the wide 
variety of modules available to integrate into almost any other system or protocol suite. While the 
underlying rationale and implications of restrictions on sourcecode availability in the context of 
security assessment is beyond the scope of this paper, it is fair to say that the fact that access 
was being restricted was enough to spur the creation of a set of technique that restored such 
access. 
 
In addition, the ongoing trend in the development of Software as a Service, ʻcloudʼ technologies 
and virtualisation means that for a reverse engineer many things that may have once been taken 
for granted have now been turned on their head. Access to the program files of the application 
being reversed is no longer a given, access to applications may well be through ʻwalled gardensʼ 
on a remote service providers system. Such an evolution in the provision of software to the 
general population calls for a change in approach to itʼs reversing if the art of reverse engineering 
is to stay current. 
 



Finally, the subject of reversing Python at the Python layer itself rather than at a lower layer (C, 
Java, Assembly etc) was a subject that was, by itself, an interesting one. Higher-level languages 
while being a boon to security in many respects are far from immune to having security flaws in 
the logic with which their applications are implemented, or from the developer not understanding 
the quirks and errata that come with every language of sufficient complexity to find mainstream 
adoption. The appreciation of the security implications of such high-level language artefacts can 
only come through working at the layer in which they exist. Immediately breaking out the 
debugger to look at the low level system interactions may not always be the best approach when 
looking for application layer / language specific bugs. The additional fact that Python is a cross 
platform language means that the discovery of a Python layer bugs gives a cross operating 
system, cross system architecture attack pathway which is often seemingly over looked. 
 
There are a number of other well-cited areas outside of security and reverse engineering where 
the ability to look inside deliberately obfuscated application code holds significant value. One of 
the most compelling being the use of such tools to identify license violations of code that is 
included in closed source projects, yet has one of the many open source licenses. Detection of 
copyright infringement is also another obvious use case. 
 
 
2. Existing Python Reversing Techniques 
 
  A discussion of any advancement in an approach should only take place in the context of what 
has gone before and upon which it builds. Python reversing has mainly centred around the 
decompilation of bytecodeii (.pyc and .pyo files) back to Python sourcecode (.py). It has been 
common practise for some time for the bytecode-compiled versions of Python applications to be 
distributed in order to stop the casual observer from seeing the applications internal workings.  
 
There are a number of free and commercial options available for performing bytecode 
decompilation encompassing both software and services including UnPyciii, decompile.pyiv, 
decompylev, the related decompyle service (commercial service)vi and depython (commercial 
service)vii. The versions of Python upon which these above are able to work vary, as does the 
accuracy of the results when real complex applications are being decompiled. It is fair to say that 
the commercial service offerings generally have much better results, especially with the most 
recent Python versions, but that the free offerings are ʻgood enoughʼ in many cases. 
 
This being said, they all approach the problem in the same way. At the abstract level the 
approach can be summarised as taking the bytecode (.pyc/.pyo) as input, evaluating it in a static 
manner and producing the sourcecode representation based on that analysis.  
 
In the context of ʻlost sourcecodeʼ this mode of operation is entirely adequate, however in the 
context of gaining access to the sourcecode of an application which is hosted remotely or which 
has been deliberately modified to evade such decompilation workflows then the requirement of 
access to standard Python bytecode files can be a roadblock to reversing. 
 
The standard Python modules for disassembling (disviii) and debugging (pdbix) are also worth 
mentioning for completeness. The dis module is able to take Python objects and files and 
disassemble them to produce dumps of ʻPython Assembly Languageʼ, but does not produce 
Python sourcecode. The pdb module is the standard way in which debugging can be achieved in 
the Python runtime, however it is fairly basic in nature and is designed to function best when the 
.py file is available on disk to it. The pdb module should be squarely viewed as a tool to aid 
development where (by definition) sourcecode is available; its functionality quickly becomes 
limited when it is being run only with access to .pyc bytecode. The roles of both modules in the 



realisation of the new techniques discussed in this paper are included in the appropriate sections 
below. 
 
 
3. Python Application Packaging Technologies 
 
 As Python is being used as the language of choice by an increasing number of developers, there 
are a number of options available with respect to the delivery of the application to the end user in 
the most convenient manner possible. As Python is an interpreted language requiring itʼs own 
runtime there are a number of dependencies an end user must meet before being able to take a 
.py or .pyc application and be able to run it. While in the GNU/Linux and BSD (and by extension 
OS X) worlds the inclusion of Python in the standard operating system has become almost 
defacto, Microsoft Windows does not support it out of the box. There is also the question of 
versioning and non-stdlib dependencies. All in all for a commercial application written in Python 
the ability to package up the application, itʼs dependencies and an appropriate runtime into a 
bundle, which the end user can ʻjust runʼ, is a compelling one. 
 
 There are three main systems in use to fulfil this role targeted at each of the main OS groups. 
For Windows there is py2exex, for OS X there is py2appxi and for GNU/Linux & BSDʼs there is cx-
freezexii. While a detailed discussion of the techniques used by each solution is beyond the scope 
of this paper, it should be noted that these systems are in widespread use by commercial entities 
developing in Python and familiarity with them and how they store the actual application code will 
be of great benefit to anyone working with Python reversing. They are also the main way in which 
modified Python distributes runtimes, as discussed below many obfuscation techniques rely on 
modifying the runtime in order to achieve obfuscation. 
 
One further note on the topic of packaging systems is that of bugs in the underlying Python 
runtime. As the packagers include their own Python runtime along with the application code, the 
chance of the packaged runtime version becoming stale over time and being vulnerable to bugs 
that have been discovered in the runtime is very possible. Even if the systems version of the 
Python runtime is patched, the bundled versions in application packages will not be. Knowing the 
versions of Python bundled with any packaged application is a valuable attack opportunity that is 
often overlooked. 
 
 
4. Obfuscation Techniques 
 
 During the period in which commercial/closed source Python applications have been assessed a 
number of obfuscation techniques employed by authors have been noted. They range in 
complexity from trivial to fairly involved, the most involved being the initial impetus for the 
development of a toolkit to address the problems they raised. While each technique will be 
discussed individually they are often seen used in conjunction with one another in an attempt to 
raise the barrier of reversing further. 
 
The simplest form of obfuscation and one that is very often seen is the distribution of bytecode 
only forms of the application. As has already been discussed the existing Python decompilers can 
in general easily deal with this form of obfuscation and so it will not be discussed further. 
 
4.1 Hiding in a packager/Tying to a modified runtime 
 
 The superficial alteration of an attribute of a packaged runtime such as a version string coupled 
with an application level check of the attribute is a trivial method to bypass. When this has been 



seen it is also often coupled with a much-reduced set of stdlib modules in the bundled runtime. 
The goal of the author can be guessed to be stopping the application code from running in 
anything but their cut down runtime with the hope being that dynamic/runtime analysis will be 
disrupted. If runtime analysis is desired then a simple understanding of the packing system used 
is all that is required to get access to the Python runtime files. From that point taking any stdlib 
Python from the same main version (2.4.x, 2.5.x, 2.6.x etc) and putting it into the correct location 
will allow that module to be used to assess the application. 
This also clearly does not guard against the static analysis done by the traditional Python 
decompilers on the applications .pyc files once they have been accessed inside the package. 
 
4.2 Bytecode magic number switching 
 
 The file format of the Python bytecode in the .pyc/.pyo is deliberately undocumentedxiii to allow 
for the changes of format between versions without the hassle of things which relied on the 
previous format breaking. Despite this the format is well understood to consist of the followingxiv: 
 

• A 4 byte magic number (with the last 2 bytes 0xD, 0xA) 
• A 4 byte timestamp modification timestamp 
• A marshalled code object 

 
The magic number is used to determine which runtime version is the correct one to run the 
bytecode under and changes with every version number change. For CPython all the currently 
known values can be found in the comments at the top of import.cxv from the underlying runtimes 
sourcecode. If the magic number does not match the version of the Python runtime used to 
invoke the bytecode then the following error message is generated: 
 

RuntimeError: Bad magic number in .pyc file 
 
If the bundled runtime is modified to have a different set of version to magic byte mappings then 
an arbitrary non-standard value can be used as the magic byte value. This will mean that any 
standard Python runtime will now refuse to run the bytecode. This also affects many of the 
traditional decompilers as they are expecting correctly formatted bytecode and use the magic 
number to determine what version of Python bytecode they will analyse. If an unexpected value is 
provided then many will refuse to go any further in their decompilation. 
 
A simple solution to such obfuscation is to change the magic bytes to one of the standard values. 
If the exact version of the bytecode is not known there is a small enough set of valid magic bytes 
to mean that trying them all until one works is not out of the question.  
 
4.3 Marshal format change 
 
 Just as with the alteration to the runtime to use a different magic number, the entire marshalling 
format used to encode the code object in the .pyc/.pyo can be altered in a packaged runtime. This 
means that any other standard python runtime will not understand how to interpret the bytecode 
file into valid python code objects, as well as meaning that the Python decompilers will also fail. 
Depending on the complexity of the changes made to the marshalled code object within the .pyc 
or the structure of the .pyc itself will determine whether the obfuscated format can be converted 
back to a standard form. 
 
 
 
 



4.4 Bytecode encryption 
 
 Bytecode encryption can essentially be thought of as a more complex variant of changing the 
marshalling format. However the key difference is that understanding the changes is much more 
difficult requiring access to some form of embedded secret in the modified Python runtime to gain 
access to the Python assembly instructions. Once again such a change to the bytecode format on 
disk means that a standard Python runtime is unable to run the bytecode, and traditional 
decompilers cannot perform its task. A small number of instances of what are assumed to be 
bytecode encryption as opposed to a different marshalling scheme have been seen, however 
none have as yet been decrypted to validate proof positive this assumption. This is an area where 
attacking the lower layers of C and assembler would likely have good success, but as this 
research was focussing on Python layer reversing this has not been investigated fully as yet. 
 
4.5 Sourcecode obfuscation 
 
 Another type of obfuscation that will be mentioned for completeness is the obfuscation of the 
source itselfxvi. This approach does not try and alter the bytecode, but creates an alternate source 
listing which has equivalent functionality to the original but is much more complex to follow, 
typically through using various types of indirection and functional segmentation. The philosophy 
clearly being ʻhave the code, you wonʼt understand itʼ. While this is a popular choice with 
javascript (especially in websites hosting malware) the author has not seen a real world use case 
of this manner of obfuscation with Python, though that is obviously not to say some do not exist.  
 
4.6 Opcode remapping 
 
 Opcode remapping is where the modified Python runtime takes the standard value to operation 
mapping which associate a Python assembly language mnemonic with a unique value and 
switches them around. This means that even if the bytecode is available, a decompiler will 
produce gibberish sourcecode output (if it manages anything) as the stream of bytecode is being 
interpreted with incorrect meanings being assigned to the Python assembly operations.  
In standard Python the opcode mapping is found in the opcode.pyxvii module, which is fairly 
straightforward to follow. The modified Python runtime will not ship with this file, and the reliance 
of other modules such as dis on opcode.py , and the subsequent reliance of decompilers on dis 
and a correct opcode map can cause some headaches. 
The technique of opcode remapping has been seen on numerous occasions and proves to be an 
effective, yet easy to implement deterrent to reverse engineering. It is often seen used in 
conjunction with other techniques described above, and as such stops traditional decompilation 
techniques with no simplistic work around. 
 
It was the presence of opcode remapping in conjunction with other techniques in an application 
that was begging to be assessed which initiated this research. The specific methodology used to 
defeat this is discussed below. 
 
 
5. A new approach to Python reversing and decompilation 
 
 All of the Python obfuscations previously discussed, with the possible exception of sourcecode 
obfuscation, have evolved to combat the normal decompilation workflow of taking standard 
Python bytecode files and taking the instructions found within back to a sourcecode form. As soon 
as the decompiler is unable to understand the input provided to it then the game is over. 
 



The more generic a solution is in dealing with obfuscated bytecode the better, continually playing 
a cat and mouse game is not a desirable goal. Identifying common approaches used in all the 
discussed obfuscations, as well as hopefully the unobserved ones, should conceptually allow for 
a new reversing approach to defeat all the existing anti-reversing techniques in use for Python. 
 
One such common approach to all the existing anti-reversing mechanisms is that the aim is to 
protect the application while it is at rest, while it is sitting in files on disk. The variety of modified 
runtimes seen all have a set of secrets they use to ʻunlockʼ the bytecode in order for them to be 
able to get things back into a standard Pythonic form which is executable. That is to say, once the 
program is running in memory it has already been stripped of its protection by the very 
mechanism that was protecting it. 
 
Taking a running Python application that has been arbitrarily obfuscated on disk and producing 
the sourcecode with which it was coded was the most generic way in which all the anti-reversing 
techniques could be circumvented. The specific manner in which this was achieved is discussed 
below. A proof of concept tool was written to demonstrate the feasibility of the ideas discussed, 
as well as to address the actual problem that was set out to be solved – looking for bugs in closed 
source/commercial Python applications. 
While this is the same approach as many compiled language debuggers use to access the 
internals of a running program, it must be remembered that the end goal is to get back to a 
representational sourcecode listing of the application not merely to evaluate it at runtime in a 
dynamic manner. 
 
5.1 Getting ʻin processʼ 
 
 Any methodology that relies on the evaluation of a program at runtime obviously relies on getting 
into the context of the running application. Even with anti-reversing techniques in use, getting into 
the main thread of any Python application is surprisingly simple.  
 When Python modules are referenced in code the .py, .pyc or .pyo file extension is not used; if 
there is only a single .py /.pyc/.pyo file present then that file will be used, if there are multiple files 
present then the timestamp embedded in the bytecode file itself (see section 4.2) is check against 
the mtime on the .py file to see if they are equal, if they are the already bytecode compiled 
.pyc/.pyo is used, if they are not it is assumed that the .py has changed and is therefore used 
(see the check_compiled_module() function in import.c xv). The upshot being that even if an 
application only shipped with obfuscated .pyc bytecode files, simply renaming one of these files 
and placing a .py file of the original name in itʼs place means that file is executed instead. 
Of course the earlier in the execution sequence the file that is being replaced is, the earlier in the 
applications execution control is taken. Many of the application packaging technologies have 
manifests which state the first python file to be executed and these can often make good 
candidates. A further requirement is to try and allow the normal execution flow of the application 
to continue, albeit under control. The content of the replacement file can be anything however 
including something similar to the code snippet in Fig 1 allows for the replacement file to blindly 
mirror the functions in a file it is replacing when it is called from other areas of code. 
 
So getting in process is easy, from here it is simple to be able to do dynamic runtime analysis, but 
sourcecode is the end goal being strived for. 
 
 
 
 
 
 
 



Fig 1. Code snippet to blindly mirror a renamed module at runtime 
 
import renamed_module 
 
for x in dir(renamed_module): 
 
    if x[:2] == "__": 
        continue 
     
    print "%s mirroring %s.%s"%(x, renamed_module.__file__, x) 
    exec("%s = renamed_module.%s"%(x,x)) 
 
 
 
 5.2 Evaluating instantiated objects 
 
 Once in process, access to the running context of the application is available and the objects in 
memory can be evaluated. In Python all methods and function objects have a func_code object 
that contains a wealth of data about its operation and implementation. It is this object that the 
inspectxviii module uses when it is providing information about objects. The co_code member of 
the func_code object contains the bytecode of the function; such bytecode could be dumped 
and decompiled in the traditional way (albeit a function at a time).  
 
There are a number of approaches which can be used to try and get the sourcecode back from 
instantiated objects accessible in memory, the determination of which is the appropriate one to 
use depends on the facilities available in the injected Python runtime. 
 
In general the techniques fall into two categories: ʻobject relationʼ tasked with how to relate the 
chunks of bytecode in the objects to each other, and ʻbytecode accessʼ tasked with how to 
actually get access to the bytecode objects themselves. 
 
Object relation can occur in two ways, ʻfilesystem traversalʼ and ʻmemory traversalʼ. In order to be 
able to use filesystem traversal the injected runtime needs access to the filesystem where the 
.pyc files are located. The filesystem is walked descending into sub-directories and identifying 
any Python modules, identified modules are then subject to the appropriate bytecode access 
method in order to get bytecode for decompilation. 
The memory traversal approach is used when for any reason access to the filesystem containing 
the Python bytecode is not possible (see section 6). In this case the attributes of the objects in 
memory are interrogated for objects containing func_code objects (e.g. method / function 
objects) and objects containing other Python type objects (e.g. class / modules objects). The 
object hierarchy is walked until all the leaf nodes are reached with all co_code objects found 
along the way then being passed to the appropriate bytecode access method in order to get 
bytecode for decompilation. 
While the memory traversal method means access to the disk is not required, it also means only 
those objects which are currently instantiated will be subject to interrogation and subsequent 
decompilation.  
 
Once a hierarchy of objects has been established the bytecode of the objects has to be 
accessed. If the filesystem traversal technique has been used then bytecode can be accessed 
either through unmarshaling or through object interrogation. If memory traversal has been used 
then only object interrogation can be used to access the bytecode. 
Unmarshaling requires that the marshal module be available for use in the injected runtime, if 
available the Python modules identified on disk can simply be unmarshaled via a call to 



marshal.loads() function. This makes the entire bytecode of the module available for 
decompilation and gives the most complete results akin to decompilation of the .pyc files. 
If access to the marshal module is not available or the memory traversal technique has been 
used, then the hierarchy of Python objects are interrogated to locate code objects containing 
bytecode for decompilation. In this case as module objects do not contain a co_code object for 
performance reasonsxix the Python source code that is at the top level of a module cannot be 
decompiled after module instantiation there is no bytecode representation.  
Instead of decompilation a method of ʻsourcecode reconstructionʼ has been developed to attempt 
to create a sourcecode representation of a modules top level code from runtime analysis of the 
attributes it does have, along with the analysis of any its constituent objects which do conatin 
code objects. While this is not perfect in operation for all top-level objects, in reality for real 
application very little complex code is at the top level of a module, instead residing in functions, 
classes and methods, meaning imperfect decompilation is often more than acceptable for the 
goal of bug finding. 
 
Through a combination of the appropriate object hierarchy discovery method and bytecode 
access method, candidate bytecode for decompilation can be obtained directly from a running 
Python instance even when efforts have been made to restrict the functionality of the runtime. 
The above approaches work against all of the obfuscation techniques discussed except for the 
opcode remapping approach. How to get access to usable bytecode that has been subject to 
opcode remapping is discussed in the next section.  
 
 
 5.3 Opcode remapping circumvention 
 
When opcode remapping has been used the content of the co_code object is obfuscated in the 
same way as the bytecode on disk. Runtime access to the object has been achieved but this 
does not actually gain very much leverage as the operations to which the bytecode pertains are 
still opaque. To get to the point of being able to decompile such bytecode back to source a 
slightly more complex approach is required. 
 
As of Python 2.6.4 there are 119 defined opcode values from which all Python applications are 
constructed. In order to be able to successfully decompile the remapped bytecode, the value of 
each remapped Python opcodes needs to be deduced. As runtime access to the modified Python 
has been achieved it can be used to help achieve the task of decoding via use as an oracle. 
 
An opcode remapped runtime ships with the set of stdlib Python relied on by the application, and 
possibly others. All of these files when compiled from the .py to .pyc also then have the 
obfuscated bytecode in addition to any other obfuscation applied. However the advantage that is 
available here is that they came from an already known source that is freely available. 
 
This means that if two sets of bytecode can be produced for the same sourcecode, one standard 
and one obfuscated, they can be diffʼd to yield the value to which each opcode has been 
remapped. Of course it is unlikely that every Python opcode will be contained within a single 
module so the exercise needs to be repeated across multiple modules until all opcodes have 
been seen or there are no more stdlib modules left. 
 
If opcode remapping has been used by itself the marshalled code objects in the .pyc files on disk 
can be diffed for this purpose, if however other obfuscation has been used such a remarshalling 
or encryption then the streams of bytecode need to be generated from a runtime context. 
 



It is fairly straightforward to produce two equivalent streams of bytecode for diff analysis, the 
following simplified process must be done twice – once in a stdlib runtime and once in the 
modified runtime: 
 

1. import a stdlib module 
2. get access to an ordered list of its functions/methods/generators through the dir() 

function 
3. dump the bytecode from the co_code of each function 
4. concatenate the function bytecode in the order of the dir() list 

 
Even though such streams are not identical to the unmarshalled code object in a .pyc this does 
not matter, all that matters are that the streams represent the bytecode in standard and 
obfuscated form for the same functions. For the sake of clarity such ordered concatenations of a 
modules functions bytecode will be termed .pyb files. 
 
Once both sets of .pyb files have been generated it is simple to compare them one byte at a time. 
As it is only the values of the opcodes themselves that have been remapped if the bytes 
compared are the same it can be assumed that the byte represents an argument value to an 
opocde. If the compared bytes differ it can be assumed that the values represent the remapping 
of one opcode value to another. Fig 3 illustrates this with a simple example. The obvious caveat is 
that if opcode remapping has been performed across only a subset of the opcodes some will 
have the same values in both the standard and obfuscated opcode sets. In practise this is fairly 
easy to detect and compensate for when the new opcode map is being created looking at the 
bytes that follow the bytes being evaluated.  
Once a new opcode value map has been created a new opcode.py can be created with the new 
values. The obfuscated bytecode in the co_code objects is now able to be 
disassembled/decompiled at will. 
 



 
 
 
 
 
 
 
 
 
 
 
 

Fig 3. Simple worked example of bytecode streams with remapped opcodes being diffed 
 
Take for example the following Python expression: 
 
              print “bugs” 
 
In standard Python this compiles to the following series of Python Assembly instructions: 
 
              0 LOAD_CONST               0 ('bugs') 
              3 PRINT_ITEM           
              4 PRINT_NEWLINE        
              5 LOAD_CONST               1 (None) 
              8 RETURN_VALUE 
 
These instructions in turn are represented by the following byte stream: 
 
                              0x64, 0x0, 0x0, 0x47, 0x48, 0x64, 0x1, 0x0, 0x53 
 
The bytecode produced by an opcode remapped modified runtime using the same sourcecode 
input would produce a different byte stream, for example: 
 
              0x28, 0x0, 0x0, 0x19, 0x2e, 0x28, 0x1, 0x0, 0x12 
 
Now if both of these byte streams are compared byte by byte, then it is easy to see that the 
opcodes identify themselves as the bytes that are different and the arguments to the opcodes are 
the bytes that are the same: 
 
              LOAD_CONST      0x64 -> 0x28 
              [ARG]           0x0 
              [ARG]           0x0 
              PRINT_ITEM      0x47 -> 0x19 
              PRINT_NEWLINE   0x48 -> 0x2e 
              LOAD_CONST      0x64 -> 0x28 
              [ARG]           0x1 
              [ARG]           0x0 
              RETURN_VALUE    0x53 -> 0x12 
                               
From this is it easy to see the values to which the 4 different opcodes have been remapped. 
Continuing this process for other byte streams that are known to have been produced from the 
same underlying source means that the opcode map can be built up to a point where a new 
opcode.py can be produced for use by disassemblers and decompilers. 
 



6. Reversing in ʻThe Cloudʼ 
 
 Software that is delivered as a service is a trend that has been increasing over the last few 
years, the term ʻcloudʼ has also been increasingly (mis)used to describe many of the systems and 
services providing such software. While a general discussion about this trend and the associated 
hype and spin is beyond the scope of this paper, general points about the impact of this on 
reverse engineer may not be. 
As the separation between user and software continues to increase, it is not inconceivable to 
imagine a time when a user will not have access to the application they are using files. At this 
point of the traditional approaches to reverse engineering fall down and the understanding of the 
inner workings of an application take on the form of a blackbox web assessment. However, being 
able to take an object from running memory and get to a sourcecode representation of it helps to 
shift things back into the domain of the reverse engineer. This is where the memory relational 
reconstruction approach becomes useful, as there is no filesystem structure to relate things to. 
 
Granted the usefulness of this depends on the role of the application and how the application is 
exposed in ʻa cloudʼ, as well as the amount of access a user has to interact with it. The higher-
level takeaway from this though is that even if an applicationʼs files are not available to a user, it 
may be possible in high interaction services that allow for programmatic interaction through a 
language such as Python that the source will be obtainable. This is an area that is interesting and 
will hopefully be explored more fully in future. For now consider this an interesting side benefit of 
techniques developed to solve a different set of problems. 
 
 
7. pyREtic – a proof of concept toolkit 
 
/paɪˈrɛt ɪk/ - [pahy-ret-ik] 
defn: –adjective 
of, pertaining to, affected by, or producing fever. 
 
 The principles & techniques that have been described in this paper have been embodied into a 
proof of concept toolset named pyREtic that will be released at Black Hat. The decompilation part 
of the toolset relies on a modified version of the freely available UnPyciii decompiler that is able to 
take unmarshalled bytecode from memory or dumped .pyb files and produce .py sourcecode. It 
also includes a number of bug fixes to the UnPyc project that will be contributed back into the 
project. However the techniques discussed should be just as applicable to any Python decompiler 
that can be modified to expect .pyb style bytecode rather than the marshalled .pyc format.  
 
Tools to be able to determine the values of remapped opcodes in modified runtimes are also 
included. There are also various extensions to the standard pdb module that make it more use for 
dynamic analysis and reverse engineering when the sourcecode files are not available. This will 
enable people to analyse Python applications that were previously opaque to them in order to 
make assessments about their security. 
 
The toolkit is available from http://mynameismeerkat.posterous.com the Immunity Inc websitexx. 
 
 
8. Future Directions 
 
The work discussed will be extended in future to address any new anti-reversing techniques that 
may develop. The toolkit will be developed to both improve the accuracy of decompilation that is 
provided by UnPyc, as well as the intelligence with which the constituent parts of an in memory 



module are reconstructed into a whole in the form of sourcecode. The toolkit will be freely 
available, with members of the community being encouraged to modify it as required to meet their 
needs. 
 
Up until now only CPython in the 2.x branch has been examined with respect to reverse 
engineering, as this is the currently most popular choice with application developers and where 
the need for such abilities lay. There is no reason however that as and when the need arises the 
concepts discussed should not be extended to the CPython 3.x branch, or indeed another Python 
implementation entirely such as Jythonxxi or IronPythonxxii etc. 
 
A general area of interesting research is also how to evaluate software and reverse it back to 
source when its files are not locally accessible, this is as true for other languages as well as 
Python. Future work will be conducted into the various systems where limited access to Python or 
a subset of it is provided to work with on a remote computing resource. The possibilities regarding 
the reversing and assessment of such environments will be looked at in light of the work 
discussed and the possibilities it raises for the acquisition of sourcecode from an instantiated 
object. 
 
 
9. Conclusion 
 
 A generic set of techniques has been discussed, and a proof of concept embodiment of them 
implemented to bypass the anti-reversing techniques for Python applications that were commonly 
found at the time of writing. The problem of decompilation of bytecode back to sourcecode was 
moved from the traditional static approach where files on disk were analysed, to a dynamic 
approach where the application in its running state was interrogated. This created a situation 
where the application itself had already removed the protections it had put in place, or through 
access to its running context provided a means to defeat those that were remaining. Through the 
use of the proof of concept implementation a user is now able to go from an in-memory object to 
Python sourcecode representation of that object in a relatively easy manner. 
  
 Not only have the mechanisms in common use for protecting downloadable closed source and 
commercial Python applications from being reverse engineered been reduced, but an important 
first step taken into reversing Python ʻsoftware as a serviceʼ applications delivered even without 
access to their files. 
 
Code that was once opaque to its users is now open to inspection, evaluation and risk analysis – 
so stop reading, go forth and find the bugs! 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



Revision History:  
1.0 - 30 June 2010 – Initial version for BlackHat Vegas 2010 & Defcon 18 
2.0 – 6 December 2010 – Revised prior to release of toolkit and to update email address to reflect 

that I no longer work for Immunity. 
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