

ʻpyREticʼ – In memory reverse engineering for

obfuscated Python bytecode

Rich Smith <mynameismeerkat@gmail.com>

Abstract

Growing numbers of commercial and closed source applications are being developed using the Python
programming language. The trend with developers of such applications appears to be that there is an
increasing amount of effort being invested in order to stop the sourcecode of their application being easily
obtainable by the end user. This is being achieved through the use of a variety of obfuscation techniques
designed to impede the common methods of Python decompilation. Another trend occurring in parallel is the
use of Python as an increasingly present component of 'Cloud' technologies where traditional bytecode
decompilation techniques fall down not through obfuscation, but through lack of access to the bytecode files
on disk.
 The techniques discussed in this paper extend existing Python decompilation technologies through taking
an approach that does not require access to standard Python bytecode files (.pyc/.pyo), but rather focuses
on gaining access to the bytecode through instantiated Python objects in memory and using these to
reconstruct a sourcecode listing equivalent to that composed by the applications author. Approaches will
also be discussed of how to defeat the common obfuscation techniques that have been observed in use in
order to be able to use the in memory decompilation techniques.
Finally a proof of concept embodiment of the techniques developed will be discussed which will allow people
to quickly leverage them to evaluate code for bugs that was previously opaque to them.

1. The Problem Space

 The starting point for the work discussed was the need to be able to audit Pythoni applications
for security relevant bugs in order to make assertions about the risk they may introduce into an
environment. In the pursuit of this goal it became apparent that many closed source/non-free
programs that were written in Python were making efforts to hinder the assessment of their
security through attempting to not allow access to their sourcecode. Python has become an
increasingly popular language of choice for a variety of commercial & closed source applications
due to its ability to allow rapid development and prototyping, as well as because of the wide
variety of modules available to integrate into almost any other system or protocol suite. While the
underlying rationale and implications of restrictions on sourcecode availability in the context of
security assessment is beyond the scope of this paper, it is fair to say that the fact that access
was being restricted was enough to spur the creation of a set of technique that restored such
access.

In addition, the ongoing trend in the development of Software as a Service, ʻcloudʼ technologies
and virtualisation means that for a reverse engineer many things that may have once been taken
for granted have now been turned on their head. Access to the program files of the application
being reversed is no longer a given, access to applications may well be through ʻwalled gardensʼ
on a remote service providers system. Such an evolution in the provision of software to the
general population calls for a change in approach to itʼs reversing if the art of reverse engineering
is to stay current.

Finally, the subject of reversing Python at the Python layer itself rather than at a lower layer (C,
Java, Assembly etc) was a subject that was, by itself, an interesting one. Higher-level languages
while being a boon to security in many respects are far from immune to having security flaws in
the logic with which their applications are implemented, or from the developer not understanding
the quirks and errata that come with every language of sufficient complexity to find mainstream
adoption. The appreciation of the security implications of such high-level language artefacts can
only come through working at the layer in which they exist. Immediately breaking out the
debugger to look at the low level system interactions may not always be the best approach when
looking for application layer / language specific bugs. The additional fact that Python is a cross
platform language means that the discovery of a Python layer bugs gives a cross operating
system, cross system architecture attack pathway which is often seemingly over looked.

There are a number of other well-cited areas outside of security and reverse engineering where
the ability to look inside deliberately obfuscated application code holds significant value. One of
the most compelling being the use of such tools to identify license violations of code that is
included in closed source projects, yet has one of the many open source licenses. Detection of
copyright infringement is also another obvious use case.

2. Existing Python Reversing Techniques

 A discussion of any advancement in an approach should only take place in the context of what
has gone before and upon which it builds. Python reversing has mainly centred around the
decompilation of bytecodeii (.pyc and .pyo files) back to Python sourcecode (.py). It has been
common practise for some time for the bytecode-compiled versions of Python applications to be
distributed in order to stop the casual observer from seeing the applications internal workings.

There are a number of free and commercial options available for performing bytecode
decompilation encompassing both software and services including UnPyciii, decompile.pyiv,
decompylev, the related decompyle service (commercial service)vi and depython (commercial
service)vii. The versions of Python upon which these above are able to work vary, as does the
accuracy of the results when real complex applications are being decompiled. It is fair to say that
the commercial service offerings generally have much better results, especially with the most
recent Python versions, but that the free offerings are ʻgood enoughʼ in many cases.

This being said, they all approach the problem in the same way. At the abstract level the
approach can be summarised as taking the bytecode (.pyc/.pyo) as input, evaluating it in a static
manner and producing the sourcecode representation based on that analysis.

In the context of ʻlost sourcecodeʼ this mode of operation is entirely adequate, however in the
context of gaining access to the sourcecode of an application which is hosted remotely or which
has been deliberately modified to evade such decompilation workflows then the requirement of
access to standard Python bytecode files can be a roadblock to reversing.

The standard Python modules for disassembling (disviii) and debugging (pdbix) are also worth
mentioning for completeness. The dis module is able to take Python objects and files and
disassemble them to produce dumps of ʻPython Assembly Languageʼ, but does not produce
Python sourcecode. The pdb module is the standard way in which debugging can be achieved in
the Python runtime, however it is fairly basic in nature and is designed to function best when the
.py file is available on disk to it. The pdb module should be squarely viewed as a tool to aid
development where (by definition) sourcecode is available; its functionality quickly becomes
limited when it is being run only with access to .pyc bytecode. The roles of both modules in the

realisation of the new techniques discussed in this paper are included in the appropriate sections
below.

3. Python Application Packaging Technologies

 As Python is being used as the language of choice by an increasing number of developers, there
are a number of options available with respect to the delivery of the application to the end user in
the most convenient manner possible. As Python is an interpreted language requiring itʼs own
runtime there are a number of dependencies an end user must meet before being able to take a
.py or .pyc application and be able to run it. While in the GNU/Linux and BSD (and by extension
OS X) worlds the inclusion of Python in the standard operating system has become almost
defacto, Microsoft Windows does not support it out of the box. There is also the question of
versioning and non-stdlib dependencies. All in all for a commercial application written in Python
the ability to package up the application, itʼs dependencies and an appropriate runtime into a
bundle, which the end user can ʻjust runʼ, is a compelling one.

 There are three main systems in use to fulfil this role targeted at each of the main OS groups.
For Windows there is py2exex, for OS X there is py2appxi and for GNU/Linux & BSDʼs there is cx-
freezexii. While a detailed discussion of the techniques used by each solution is beyond the scope
of this paper, it should be noted that these systems are in widespread use by commercial entities
developing in Python and familiarity with them and how they store the actual application code will
be of great benefit to anyone working with Python reversing. They are also the main way in which
modified Python distributes runtimes, as discussed below many obfuscation techniques rely on
modifying the runtime in order to achieve obfuscation.

One further note on the topic of packaging systems is that of bugs in the underlying Python
runtime. As the packagers include their own Python runtime along with the application code, the
chance of the packaged runtime version becoming stale over time and being vulnerable to bugs
that have been discovered in the runtime is very possible. Even if the systems version of the
Python runtime is patched, the bundled versions in application packages will not be. Knowing the
versions of Python bundled with any packaged application is a valuable attack opportunity that is
often overlooked.

4. Obfuscation Techniques

 During the period in which commercial/closed source Python applications have been assessed a
number of obfuscation techniques employed by authors have been noted. They range in
complexity from trivial to fairly involved, the most involved being the initial impetus for the
development of a toolkit to address the problems they raised. While each technique will be
discussed individually they are often seen used in conjunction with one another in an attempt to
raise the barrier of reversing further.

The simplest form of obfuscation and one that is very often seen is the distribution of bytecode
only forms of the application. As has already been discussed the existing Python decompilers can
in general easily deal with this form of obfuscation and so it will not be discussed further.

4.1 Hiding in a packager/Tying to a modified runtime

 The superficial alteration of an attribute of a packaged runtime such as a version string coupled
with an application level check of the attribute is a trivial method to bypass. When this has been

seen it is also often coupled with a much-reduced set of stdlib modules in the bundled runtime.
The goal of the author can be guessed to be stopping the application code from running in
anything but their cut down runtime with the hope being that dynamic/runtime analysis will be
disrupted. If runtime analysis is desired then a simple understanding of the packing system used
is all that is required to get access to the Python runtime files. From that point taking any stdlib
Python from the same main version (2.4.x, 2.5.x, 2.6.x etc) and putting it into the correct location
will allow that module to be used to assess the application.
This also clearly does not guard against the static analysis done by the traditional Python
decompilers on the applications .pyc files once they have been accessed inside the package.

4.2 Bytecode magic number switching

 The file format of the Python bytecode in the .pyc/.pyo is deliberately undocumentedxiii to allow
for the changes of format between versions without the hassle of things which relied on the
previous format breaking. Despite this the format is well understood to consist of the followingxiv:

• A 4 byte magic number (with the last 2 bytes 0xD, 0xA)
• A 4 byte timestamp modification timestamp
• A marshalled code object

The magic number is used to determine which runtime version is the correct one to run the
bytecode under and changes with every version number change. For CPython all the currently
known values can be found in the comments at the top of import.cxv from the underlying runtimes
sourcecode. If the magic number does not match the version of the Python runtime used to
invoke the bytecode then the following error message is generated:

RuntimeError: Bad magic number in .pyc file

If the bundled runtime is modified to have a different set of version to magic byte mappings then
an arbitrary non-standard value can be used as the magic byte value. This will mean that any
standard Python runtime will now refuse to run the bytecode. This also affects many of the
traditional decompilers as they are expecting correctly formatted bytecode and use the magic
number to determine what version of Python bytecode they will analyse. If an unexpected value is
provided then many will refuse to go any further in their decompilation.

A simple solution to such obfuscation is to change the magic bytes to one of the standard values.
If the exact version of the bytecode is not known there is a small enough set of valid magic bytes
to mean that trying them all until one works is not out of the question.

4.3 Marshal format change

 Just as with the alteration to the runtime to use a different magic number, the entire marshalling
format used to encode the code object in the .pyc/.pyo can be altered in a packaged runtime. This
means that any other standard python runtime will not understand how to interpret the bytecode
file into valid python code objects, as well as meaning that the Python decompilers will also fail.
Depending on the complexity of the changes made to the marshalled code object within the .pyc
or the structure of the .pyc itself will determine whether the obfuscated format can be converted
back to a standard form.

4.4 Bytecode encryption

 Bytecode encryption can essentially be thought of as a more complex variant of changing the
marshalling format. However the key difference is that understanding the changes is much more
difficult requiring access to some form of embedded secret in the modified Python runtime to gain
access to the Python assembly instructions. Once again such a change to the bytecode format on
disk means that a standard Python runtime is unable to run the bytecode, and traditional
decompilers cannot perform its task. A small number of instances of what are assumed to be
bytecode encryption as opposed to a different marshalling scheme have been seen, however
none have as yet been decrypted to validate proof positive this assumption. This is an area where
attacking the lower layers of C and assembler would likely have good success, but as this
research was focussing on Python layer reversing this has not been investigated fully as yet.

4.5 Sourcecode obfuscation

 Another type of obfuscation that will be mentioned for completeness is the obfuscation of the
source itselfxvi. This approach does not try and alter the bytecode, but creates an alternate source
listing which has equivalent functionality to the original but is much more complex to follow,
typically through using various types of indirection and functional segmentation. The philosophy
clearly being ʻhave the code, you wonʼt understand itʼ. While this is a popular choice with
javascript (especially in websites hosting malware) the author has not seen a real world use case
of this manner of obfuscation with Python, though that is obviously not to say some do not exist.

4.6 Opcode remapping

 Opcode remapping is where the modified Python runtime takes the standard value to operation
mapping which associate a Python assembly language mnemonic with a unique value and
switches them around. This means that even if the bytecode is available, a decompiler will
produce gibberish sourcecode output (if it manages anything) as the stream of bytecode is being
interpreted with incorrect meanings being assigned to the Python assembly operations.
In standard Python the opcode mapping is found in the opcode.pyxvii module, which is fairly
straightforward to follow. The modified Python runtime will not ship with this file, and the reliance
of other modules such as dis on opcode.py , and the subsequent reliance of decompilers on dis
and a correct opcode map can cause some headaches.
The technique of opcode remapping has been seen on numerous occasions and proves to be an
effective, yet easy to implement deterrent to reverse engineering. It is often seen used in
conjunction with other techniques described above, and as such stops traditional decompilation
techniques with no simplistic work around.

It was the presence of opcode remapping in conjunction with other techniques in an application
that was begging to be assessed which initiated this research. The specific methodology used to
defeat this is discussed below.

5. A new approach to Python reversing and decompilation

 All of the Python obfuscations previously discussed, with the possible exception of sourcecode
obfuscation, have evolved to combat the normal decompilation workflow of taking standard
Python bytecode files and taking the instructions found within back to a sourcecode form. As soon
as the decompiler is unable to understand the input provided to it then the game is over.

The more generic a solution is in dealing with obfuscated bytecode the better, continually playing
a cat and mouse game is not a desirable goal. Identifying common approaches used in all the
discussed obfuscations, as well as hopefully the unobserved ones, should conceptually allow for
a new reversing approach to defeat all the existing anti-reversing techniques in use for Python.

One such common approach to all the existing anti-reversing mechanisms is that the aim is to
protect the application while it is at rest, while it is sitting in files on disk. The variety of modified
runtimes seen all have a set of secrets they use to ʻunlockʼ the bytecode in order for them to be
able to get things back into a standard Pythonic form which is executable. That is to say, once the
program is running in memory it has already been stripped of its protection by the very
mechanism that was protecting it.

Taking a running Python application that has been arbitrarily obfuscated on disk and producing
the sourcecode with which it was coded was the most generic way in which all the anti-reversing
techniques could be circumvented. The specific manner in which this was achieved is discussed
below. A proof of concept tool was written to demonstrate the feasibility of the ideas discussed,
as well as to address the actual problem that was set out to be solved – looking for bugs in closed
source/commercial Python applications.
While this is the same approach as many compiled language debuggers use to access the
internals of a running program, it must be remembered that the end goal is to get back to a
representational sourcecode listing of the application not merely to evaluate it at runtime in a
dynamic manner.

5.1 Getting ʻin processʼ

 Any methodology that relies on the evaluation of a program at runtime obviously relies on getting
into the context of the running application. Even with anti-reversing techniques in use, getting into
the main thread of any Python application is surprisingly simple.
 When Python modules are referenced in code the .py, .pyc or .pyo file extension is not used; if
there is only a single .py /.pyc/.pyo file present then that file will be used, if there are multiple files
present then the timestamp embedded in the bytecode file itself (see section 4.2) is check against
the mtime on the .py file to see if they are equal, if they are the already bytecode compiled
.pyc/.pyo is used, if they are not it is assumed that the .py has changed and is therefore used
(see the check_compiled_module() function in import.c xv). The upshot being that even if an
application only shipped with obfuscated .pyc bytecode files, simply renaming one of these files
and placing a .py file of the original name in itʼs place means that file is executed instead.
Of course the earlier in the execution sequence the file that is being replaced is, the earlier in the
applications execution control is taken. Many of the application packaging technologies have
manifests which state the first python file to be executed and these can often make good
candidates. A further requirement is to try and allow the normal execution flow of the application
to continue, albeit under control. The content of the replacement file can be anything however
including something similar to the code snippet in Fig 1 allows for the replacement file to blindly
mirror the functions in a file it is replacing when it is called from other areas of code.

So getting in process is easy, from here it is simple to be able to do dynamic runtime analysis, but
sourcecode is the end goal being strived for.

Fig 1. Code snippet to blindly mirror a renamed module at runtime

import renamed_module

for x in dir(renamed_module):

 if x[:2] == "__":
 continue

 print "%s mirroring %s.%s"%(x, renamed_module.__file__, x)
 exec("%s = renamed_module.%s"%(x,x))

 5.2 Evaluating instantiated objects

 Once in process, access to the running context of the application is available and the objects in
memory can be evaluated. In Python all methods and function objects have a func_code object
that contains a wealth of data about its operation and implementation. It is this object that the
inspectxviii module uses when it is providing information about objects. The co_code member of
the func_code object contains the bytecode of the function; such bytecode could be dumped
and decompiled in the traditional way (albeit a function at a time).

There are a number of approaches which can be used to try and get the sourcecode back from
instantiated objects accessible in memory, the determination of which is the appropriate one to
use depends on the facilities available in the injected Python runtime.

In general the techniques fall into two categories: ʻobject relationʼ tasked with how to relate the
chunks of bytecode in the objects to each other, and ʻbytecode accessʼ tasked with how to
actually get access to the bytecode objects themselves.

Object relation can occur in two ways, ʻfilesystem traversalʼ and ʻmemory traversalʼ. In order to be
able to use filesystem traversal the injected runtime needs access to the filesystem where the
.pyc files are located. The filesystem is walked descending into sub-directories and identifying
any Python modules, identified modules are then subject to the appropriate bytecode access
method in order to get bytecode for decompilation.
The memory traversal approach is used when for any reason access to the filesystem containing
the Python bytecode is not possible (see section 6). In this case the attributes of the objects in
memory are interrogated for objects containing func_code objects (e.g. method / function
objects) and objects containing other Python type objects (e.g. class / modules objects). The
object hierarchy is walked until all the leaf nodes are reached with all co_code objects found
along the way then being passed to the appropriate bytecode access method in order to get
bytecode for decompilation.
While the memory traversal method means access to the disk is not required, it also means only
those objects which are currently instantiated will be subject to interrogation and subsequent
decompilation.

Once a hierarchy of objects has been established the bytecode of the objects has to be
accessed. If the filesystem traversal technique has been used then bytecode can be accessed
either through unmarshaling or through object interrogation. If memory traversal has been used
then only object interrogation can be used to access the bytecode.
Unmarshaling requires that the marshal module be available for use in the injected runtime, if
available the Python modules identified on disk can simply be unmarshaled via a call to

marshal.loads() function. This makes the entire bytecode of the module available for
decompilation and gives the most complete results akin to decompilation of the .pyc files.
If access to the marshal module is not available or the memory traversal technique has been
used, then the hierarchy of Python objects are interrogated to locate code objects containing
bytecode for decompilation. In this case as module objects do not contain a co_code object for
performance reasonsxix the Python source code that is at the top level of a module cannot be
decompiled after module instantiation there is no bytecode representation.
Instead of decompilation a method of ʻsourcecode reconstructionʼ has been developed to attempt
to create a sourcecode representation of a modules top level code from runtime analysis of the
attributes it does have, along with the analysis of any its constituent objects which do conatin
code objects. While this is not perfect in operation for all top-level objects, in reality for real
application very little complex code is at the top level of a module, instead residing in functions,
classes and methods, meaning imperfect decompilation is often more than acceptable for the
goal of bug finding.

Through a combination of the appropriate object hierarchy discovery method and bytecode
access method, candidate bytecode for decompilation can be obtained directly from a running
Python instance even when efforts have been made to restrict the functionality of the runtime.
The above approaches work against all of the obfuscation techniques discussed except for the
opcode remapping approach. How to get access to usable bytecode that has been subject to
opcode remapping is discussed in the next section.

 5.3 Opcode remapping circumvention

When opcode remapping has been used the content of the co_code object is obfuscated in the
same way as the bytecode on disk. Runtime access to the object has been achieved but this
does not actually gain very much leverage as the operations to which the bytecode pertains are
still opaque. To get to the point of being able to decompile such bytecode back to source a
slightly more complex approach is required.

As of Python 2.6.4 there are 119 defined opcode values from which all Python applications are
constructed. In order to be able to successfully decompile the remapped bytecode, the value of
each remapped Python opcodes needs to be deduced. As runtime access to the modified Python
has been achieved it can be used to help achieve the task of decoding via use as an oracle.

An opcode remapped runtime ships with the set of stdlib Python relied on by the application, and
possibly others. All of these files when compiled from the .py to .pyc also then have the
obfuscated bytecode in addition to any other obfuscation applied. However the advantage that is
available here is that they came from an already known source that is freely available.

This means that if two sets of bytecode can be produced for the same sourcecode, one standard
and one obfuscated, they can be diffʼd to yield the value to which each opcode has been
remapped. Of course it is unlikely that every Python opcode will be contained within a single
module so the exercise needs to be repeated across multiple modules until all opcodes have
been seen or there are no more stdlib modules left.

If opcode remapping has been used by itself the marshalled code objects in the .pyc files on disk
can be diffed for this purpose, if however other obfuscation has been used such a remarshalling
or encryption then the streams of bytecode need to be generated from a runtime context.

It is fairly straightforward to produce two equivalent streams of bytecode for diff analysis, the
following simplified process must be done twice – once in a stdlib runtime and once in the
modified runtime:

1. import a stdlib module
2. get access to an ordered list of its functions/methods/generators through the dir()

function
3. dump the bytecode from the co_code of each function
4. concatenate the function bytecode in the order of the dir() list

Even though such streams are not identical to the unmarshalled code object in a .pyc this does
not matter, all that matters are that the streams represent the bytecode in standard and
obfuscated form for the same functions. For the sake of clarity such ordered concatenations of a
modules functions bytecode will be termed .pyb files.

Once both sets of .pyb files have been generated it is simple to compare them one byte at a time.
As it is only the values of the opcodes themselves that have been remapped if the bytes
compared are the same it can be assumed that the byte represents an argument value to an
opocde. If the compared bytes differ it can be assumed that the values represent the remapping
of one opcode value to another. Fig 3 illustrates this with a simple example. The obvious caveat is
that if opcode remapping has been performed across only a subset of the opcodes some will
have the same values in both the standard and obfuscated opcode sets. In practise this is fairly
easy to detect and compensate for when the new opcode map is being created looking at the
bytes that follow the bytes being evaluated.
Once a new opcode value map has been created a new opcode.py can be created with the new
values. The obfuscated bytecode in the co_code objects is now able to be
disassembled/decompiled at will.

Fig 3. Simple worked example of bytecode streams with remapped opcodes being diffed

Take for example the following Python expression:

 print “bugs”

In standard Python this compiles to the following series of Python Assembly instructions:

 0 LOAD_CONST 0 ('bugs')
 3 PRINT_ITEM
 4 PRINT_NEWLINE
 5 LOAD_CONST 1 (None)
 8 RETURN_VALUE

These instructions in turn are represented by the following byte stream:

 0x64, 0x0, 0x0, 0x47, 0x48, 0x64, 0x1, 0x0, 0x53

The bytecode produced by an opcode remapped modified runtime using the same sourcecode
input would produce a different byte stream, for example:

 0x28, 0x0, 0x0, 0x19, 0x2e, 0x28, 0x1, 0x0, 0x12

Now if both of these byte streams are compared byte by byte, then it is easy to see that the
opcodes identify themselves as the bytes that are different and the arguments to the opcodes are
the bytes that are the same:

 LOAD_CONST 0x64 -> 0x28
 [ARG] 0x0
 [ARG] 0x0
 PRINT_ITEM 0x47 -> 0x19
 PRINT_NEWLINE 0x48 -> 0x2e
 LOAD_CONST 0x64 -> 0x28
 [ARG] 0x1
 [ARG] 0x0
 RETURN_VALUE 0x53 -> 0x12

From this is it easy to see the values to which the 4 different opcodes have been remapped.
Continuing this process for other byte streams that are known to have been produced from the
same underlying source means that the opcode map can be built up to a point where a new
opcode.py can be produced for use by disassemblers and decompilers.

6. Reversing in ʻThe Cloudʼ

 Software that is delivered as a service is a trend that has been increasing over the last few
years, the term ʻcloudʼ has also been increasingly (mis)used to describe many of the systems and
services providing such software. While a general discussion about this trend and the associated
hype and spin is beyond the scope of this paper, general points about the impact of this on
reverse engineer may not be.
As the separation between user and software continues to increase, it is not inconceivable to
imagine a time when a user will not have access to the application they are using files. At this
point of the traditional approaches to reverse engineering fall down and the understanding of the
inner workings of an application take on the form of a blackbox web assessment. However, being
able to take an object from running memory and get to a sourcecode representation of it helps to
shift things back into the domain of the reverse engineer. This is where the memory relational
reconstruction approach becomes useful, as there is no filesystem structure to relate things to.

Granted the usefulness of this depends on the role of the application and how the application is
exposed in ʻa cloudʼ, as well as the amount of access a user has to interact with it. The higher-
level takeaway from this though is that even if an applicationʼs files are not available to a user, it
may be possible in high interaction services that allow for programmatic interaction through a
language such as Python that the source will be obtainable. This is an area that is interesting and
will hopefully be explored more fully in future. For now consider this an interesting side benefit of
techniques developed to solve a different set of problems.

7. pyREtic – a proof of concept toolkit

/paɪˈrɛt ɪk/ - [pahy-ret-ik]
defn: –adjective
of, pertaining to, affected by, or producing fever.

 The principles & techniques that have been described in this paper have been embodied into a
proof of concept toolset named pyREtic that will be released at Black Hat. The decompilation part
of the toolset relies on a modified version of the freely available UnPyciii decompiler that is able to
take unmarshalled bytecode from memory or dumped .pyb files and produce .py sourcecode. It
also includes a number of bug fixes to the UnPyc project that will be contributed back into the
project. However the techniques discussed should be just as applicable to any Python decompiler
that can be modified to expect .pyb style bytecode rather than the marshalled .pyc format.

Tools to be able to determine the values of remapped opcodes in modified runtimes are also
included. There are also various extensions to the standard pdb module that make it more use for
dynamic analysis and reverse engineering when the sourcecode files are not available. This will
enable people to analyse Python applications that were previously opaque to them in order to
make assessments about their security.

The toolkit is available from http://mynameismeerkat.posterous.com the Immunity Inc websitexx.

8. Future Directions

The work discussed will be extended in future to address any new anti-reversing techniques that
may develop. The toolkit will be developed to both improve the accuracy of decompilation that is
provided by UnPyc, as well as the intelligence with which the constituent parts of an in memory

module are reconstructed into a whole in the form of sourcecode. The toolkit will be freely
available, with members of the community being encouraged to modify it as required to meet their
needs.

Up until now only CPython in the 2.x branch has been examined with respect to reverse
engineering, as this is the currently most popular choice with application developers and where
the need for such abilities lay. There is no reason however that as and when the need arises the
concepts discussed should not be extended to the CPython 3.x branch, or indeed another Python
implementation entirely such as Jythonxxi or IronPythonxxii etc.

A general area of interesting research is also how to evaluate software and reverse it back to
source when its files are not locally accessible, this is as true for other languages as well as
Python. Future work will be conducted into the various systems where limited access to Python or
a subset of it is provided to work with on a remote computing resource. The possibilities regarding
the reversing and assessment of such environments will be looked at in light of the work
discussed and the possibilities it raises for the acquisition of sourcecode from an instantiated
object.

9. Conclusion

 A generic set of techniques has been discussed, and a proof of concept embodiment of them
implemented to bypass the anti-reversing techniques for Python applications that were commonly
found at the time of writing. The problem of decompilation of bytecode back to sourcecode was
moved from the traditional static approach where files on disk were analysed, to a dynamic
approach where the application in its running state was interrogated. This created a situation
where the application itself had already removed the protections it had put in place, or through
access to its running context provided a means to defeat those that were remaining. Through the
use of the proof of concept implementation a user is now able to go from an in-memory object to
Python sourcecode representation of that object in a relatively easy manner.

 Not only have the mechanisms in common use for protecting downloadable closed source and
commercial Python applications from being reverse engineered been reduced, but an important
first step taken into reversing Python ʻsoftware as a serviceʼ applications delivered even without
access to their files.

Code that was once opaque to its users is now open to inspection, evaluation and risk analysis –
so stop reading, go forth and find the bugs!

Revision History:
1.0 - 30 June 2010 – Initial version for BlackHat Vegas 2010 & Defcon 18
2.0 – 6 December 2010 – Revised prior to release of toolkit and to update email address to reflect

that I no longer work for Immunity.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
References:
i	 	 	 http://www.python.org	
ii	 	 	 http://docs.python.org/library/dis.html#bytecodes	
iii	 	 http://unpyc.sourceforge.net	 &	 http://code.google.com/p/unpyc/	
iv	 	 	 http://users.cs.cf.ac.uk/J.P.Giddy/python/decompiler/decompiler.html	
v	 	 	 	 http://sourceforge.net/projects/decompyle/	
vi	 	 	 http://www.crazy-‐compilers.com/decompyle/	
vii	 	 http://depython.net/	
viii	 http://docs.python.org/library/dis.html	
ix	 	 	 http://docs.python.org/library/pdb.html	
x	 	 	 	 http://www.py2exe.org/	
xi	 	 	 http://svn.pythonmac.org/py2app/py2app/trunk/doc/index.html	
xii	 	 	 http://cx-‐freeze.sourceforge.net/	
xiii	 	 http://docs.python.org/library/marshal.html	 (Paragraph	 1)	
xiv	 	 http://nedbatchelder.com/blog/200804/the_structure_of_pyc_files.html	
xv	 	 	 http://svn.python.org/view/python/trunk/Python/import.c?view=markup	
xvi	 	 http://bitboost.com/#Python_obfuscator	 &	 	
	 	 	 	 	 	 http://pawsense.com/python..obfuscator/	 (online	 demo)	
xvii	 	 http://code.python.org/hg/trunk/file/a9ad497d1e29/Lib/opcode.py	
xviii	 http://docs.python.org/library/inspect.html	
xix	 http://docs.python.org/reference/datamodel.html	 Section	 3.2,	 subsection	 	 ‘Modules’	
xx	 	 	 http://www.immunityinc.com/resources-‐freesoftware.shtml	
xxi	 	 	 	 http://www.jython.org/	
xxii	 	 	 http://ironpython.net/	
	

