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What is a User-Friendly 
Exploit?

● An exploit that causes no distress to 
the user of the exploited program

– i.e., signs or symptoms
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Why Should You Care?
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Problem Statement
● Given an exploitable bug in a Windows 

application
● How can you execute arbitrary code 

such that:
– The application continues to run
– The application appears to run normally?
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Some General Things

● Do as little as possible before 
returning control to the program

● Prevent the exploit from running again

● Logging

● Visual Cues
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The Big Deal: Recovery

● Recovery is the shellcode we write to 
make the exploited process continue as 
if nothing unusual happened

● It's more than calling ExitThread()
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Single-Threaded Processes

● Dead thread == Dead process

Main thread
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Multithreaded Process

Main thread

Input-handling
thread

Input-handling
thread

Input-handling
thread
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Multi-threaded, take 2
● Multiple threads, but each one has 

specific functions
● Killing a thread won't kill the process

– But it will be severely disabled
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Restarting/Replacing the Thread

● May not be feasible

– Thread creates windows
– Other threads holding handle to 

current thread
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The Plan

● Identify a place to return control
● Release shared resources
● Find/fix data structures
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Observe and Emulate

● Get cozy with your debugger
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Example: Complete Stack 
Overwrite

● Upon gaining execution, the thread's 
stack is in bad shape

● Having the thread continue execution 
seems impossible
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Challenges

● A (possibly large) number of functions have 
not completed due to exploitation

● What were those functions supposed to do?

● What resources are held that haven't been 
released?

● Where can we return control to the 
program?



15

Automating Cleanup

● We're looking at a 
labour-intensive, 
manual process

● Some elements 
can be automated
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Immunity Debugger
● Since we'll be spending a lot of time 

with the debugger, an extensible 
framework is ideal

● Immunity Debugger allows you to 
create custom scripts
– and is freely available

● It uses the Python scripting language 
since it's flexible and easy to use
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Finding the Message Pump

● There will be a place where the thread 
loops, waiting for indications that it 
has some work to do

● May be its own function
● May be in the thread's initial function
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Automating Message Pump 
Finding

● We can do this manually
– Read the code in the thread's call stack
– Test hypotheses by setting breakpoints

● We can write an ID script
– Hook calls to PeekMessage or other 

communication functions
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Finding C++ objects

● What objects does the message pump 
use?

● Where are they located (heap, stack, 
.data?)

● How does the message pump reference 
them?
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Make It or Fake It

● A C++ object pointer was on the stack
– Can't locate it

● Allocate some memory
– Use a pointer to the actual function
– Or make your own
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OS vs. Application Synchronization

● Windows provides a variety of objects:

– Mutexes, Semaphores
– Processes, Threads
– Input, Events, Notifications
– Waitable timers

● Applications can implement their own 
synchronization mechanisms
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Recognizing Synchronization

● The process doesn't crash
– But it doesn't exactly work, either

● Variable checking at the beginning of 
functions

– Especially “end if non-zero” checks
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Finding Synchronization Issues

● We can do this manually

– Read code that is executed by all other 
threads

● We can write an ID script

– Keep track of any objects being waited 
on

● Demo later!
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Versioning

● Techniques described makes exploit 
more “brittle”

– Easier to break if something changes 

● Remember, at this point we have code 
execution.  

– Easy to check for exact versions of 
DLLs, etc.
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Demo!
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Conclusions
● Code execution is not the end of the story!

● ExitThread() and ExitProcess() aren't your 
only options

● Cleanup requires in-depth process 
knowledge

● Immunity Debugger offers tools to improve 
your shellcode-writing experience
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Questions?

Get Immunity Debugger at:

http://www.immunityinc.com/products-immdbg.shtml

Security Research Team

Thank you for your time!
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