
1

Creating User-Friendly 
Exploits

Security Research 

Skylar Rampersaud
skylar@immunityinc.com



2

What is a User-Friendly 
Exploit?

● An exploit that causes no distress to 
the user of the exploited program

– i.e., signs or symptoms



3

Why Should You Care?



4

Problem Statement
● Given an exploitable bug in a Windows 

application
● How can you execute arbitrary code 

such that:
– The application continues to run
– The application appears to run normally?



5

Some General Things

● Do as little as possible before 
returning control to the program

● Prevent the exploit from running again

● Logging

● Visual Cues



6

The Big Deal: Recovery

● Recovery is the shellcode we write to 
make the exploited process continue as 
if nothing unusual happened

● It's more than calling ExitThread()



7

Single-Threaded Processes

● Dead thread == Dead process

Main thread



8

Multithreaded Process

Main thread

Input-handling
thread

Input-handling
thread

Input-handling
thread



9

Multi-threaded, take 2
● Multiple threads, but each one has 

specific functions
● Killing a thread won't kill the process

– But it will be severely disabled



10

Restarting/Replacing the Thread

● May not be feasible

– Thread creates windows
– Other threads holding handle to 

current thread



11

The Plan

● Identify a place to return control
● Release shared resources
● Find/fix data structures



12

Observe and Emulate

● Get cozy with your debugger



13

Example: Complete Stack 
Overwrite

● Upon gaining execution, the thread's 
stack is in bad shape

● Having the thread continue execution 
seems impossible



14

Challenges

● A (possibly large) number of functions have 
not completed due to exploitation

● What were those functions supposed to do?

● What resources are held that haven't been 
released?

● Where can we return control to the 
program?



15

Automating Cleanup

● We're looking at a 
labour-intensive, 
manual process

● Some elements 
can be automated



16

Immunity Debugger
● Since we'll be spending a lot of time 

with the debugger, an extensible 
framework is ideal

● Immunity Debugger allows you to 
create custom scripts
– and is freely available

● It uses the Python scripting language 
since it's flexible and easy to use



17

Finding the Message Pump

● There will be a place where the thread 
loops, waiting for indications that it 
has some work to do

● May be its own function
● May be in the thread's initial function



18

Automating Message Pump 
Finding

● We can do this manually
– Read the code in the thread's call stack
– Test hypotheses by setting breakpoints

● We can write an ID script
– Hook calls to PeekMessage or other 

communication functions



19

Finding C++ objects

● What objects does the message pump 
use?

● Where are they located (heap, stack, 
.data?)

● How does the message pump reference 
them?



20

Make It or Fake It

● A C++ object pointer was on the stack
– Can't locate it

● Allocate some memory
– Use a pointer to the actual function
– Or make your own



21

OS vs. Application Synchronization

● Windows provides a variety of objects:

– Mutexes, Semaphores
– Processes, Threads
– Input, Events, Notifications
– Waitable timers

● Applications can implement their own 
synchronization mechanisms



22

Recognizing Synchronization

● The process doesn't crash
– But it doesn't exactly work, either

● Variable checking at the beginning of 
functions

– Especially “end if non-zero” checks



23

Finding Synchronization Issues

● We can do this manually

– Read code that is executed by all other 
threads

● We can write an ID script

– Keep track of any objects being waited 
on

● Demo later!



24

Versioning

● Techniques described makes exploit 
more “brittle”

– Easier to break if something changes 

● Remember, at this point we have code 
execution.  

– Easy to check for exact versions of 
DLLs, etc.



25

Demo!



26

Conclusions
● Code execution is not the end of the story!

● ExitThread() and ExitProcess() aren't your 
only options

● Cleanup requires in-depth process 
knowledge

● Immunity Debugger offers tools to improve 
your shellcode-writing experience



27

Questions?

Get Immunity Debugger at:

http://www.immunityinc.com/products-immdbg.shtml

Security Research Team

Thank you for your time!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

